C1 HANDBUCH

Rennsport Zünd-Einspritz-Steuergerät Typ: C1 Version: 1.14

Inhaltsverzeichnis

Lieferumfang:	
Allgemeine Beschreibung:	6
Funktionsprinzip:	6
SchaltplanSchaltplan	8
Technische Daten:	8
Einbau:	9
Anschluss:	9
Minimalkonfiguration	9
Betrieb des Zündungsteils allein	9
Betrieb des Einspritzteils allein	
4pol. Steckverbindung X1:	
Zündverstärker	10
8pol. Steckverbindung X2:	12
Ünterstützung für einfache NOS-Anlagen	. 12
Unterstützte Motortemperaturgeber	
Unterstützte Luftmassenmesser	
Steckerbelegung: 80er und 92er Kunststoff-Luftmassenmesser:	. 13
Steckerbelegung: 95er Aluminium-Luftmassenmesser	. 13
Unterstützte Ansauglufttemperaturgeber	
Unterstützse Ladedrucksensoren	. 14
Steckerbelegung: Ladedrucksensor BOSCH	14
Steckerbelegung: Alternativer Ladedrucksensor	. 15
3 bar Ladedrucksensor	. 15
Anschlussbelegung 3 bar Ladedrucksensor	15
6pol. Steckverbindung X3:	
Benzin Einspritzdüsen	
Wasser Einspritzdüsen	16
Wasser Einspritzdüsen	
Minibuchse für Thermoelement X4:	17
Bedienung:	18
Inhalt des Anzeigedisplays	
Beispiel 1: Verstellen des Zündungsoffsets	19
Übersicht der Verstellmöglichkeiten:	
Spitzenwertspeicher für die Abgastemperatur	
Zündungsteil	. 20
Zündverstellung durch externe Schalter oder Geräte	21
Gemischteil	
Wasser-Methanol Einspritzung	22
Startautomatik	
Startmasse vorgeben	22
Automatische Schubabschaltung	
Auswahl der Geber	
Nullpunkt der Einspritzdüse einstellen	
Nullpunkt der Wasser-Methanol Einspritzdüsen einstellen	23
Drehzahlanzeige Abgleichen	
Motortyn	24

24
24
24
. 24
24
24
25
25
25
26
26
26
26
26
27
. 27
. 27
27
27
28

Lieferumfang:

- 1 Steuergerät C1
- 3 Steckergehäuse mit Quetschkontakten
- 1 Diese Anleitung

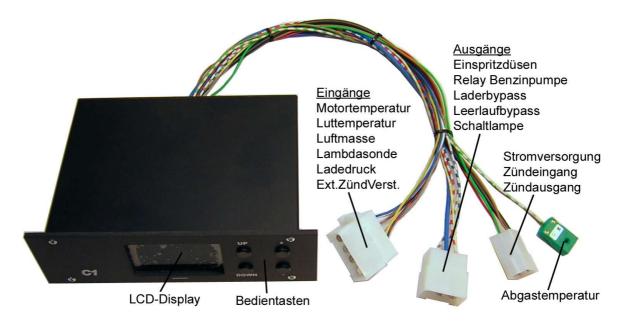


Foto: C1 Motronik Übersicht

Foto: C1 Motronik Befestigungsmöglichkeit

M6 Innengewinde

Allgemeine Beschreibung:

Kompaktes digitales Zünd-Einspritz-Steuergerät für den Rennsporteinsatz. Alle Werte für Zündung und Gemisch können auf einem **LCD-Display** abgelesen werden und sind mit Tasten verstellbar. Die Einstellschritte sind so gross wie möglich um unnötiges getippe zu vermeiden und so klein wie nötig um optimale Ergebnisse zu erzielen.

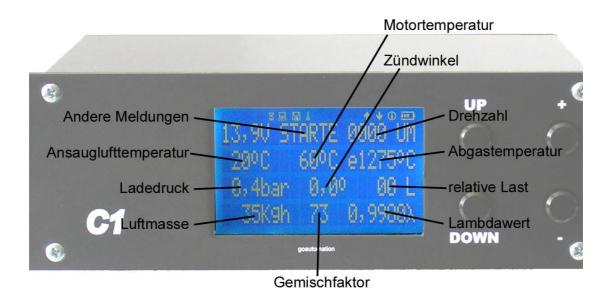


Foto: LCD-Display

Funktionsprinzip:

Zündung: Die vom Zündgeber (Hallsensor) erzeugten Impulse werden verarbeitet und entsprechend den eingestellten Kennfeldern ausgegeben um einen Zündverstärker anzusteuern.

Der Zündwinkel wird von Drehzahl, Luft-Temperatur, Motor-Temperatur, Ladedruck und Schalt-Drehzahl bestimmt.

Gemisch: Die angesaugte Luftmasse wird gemessen und der Wert zur Gemischerzeugung entsprechend den eingestellten Kennfeldern genutzt. Dabei wird einmal pro Kurbelwellenumdrehung Kraftstoff in die Saugrohre (MPI) oder in das Sammelsaugrohr (SPI) eingespritzt (sog. Simultaneinspritzung). Die Einspritzdüsen werden direkt an das Steuergerät angeschlossen.

Das Gemisch wird von Drehzahl, Lambdawert, Luft-Temperatur und Motor-Temperatur bestimmt.

Schaltplan:

5.2005 Layout: C1 Version: V1.0 88a **a** $2,5 \text{ mm}^2$ $2,5 \text{ mm}^2$ 88 Sicherung für: 4x0,85A Einspritzdüsen ca 20A Benzinpumpe BENZINPUMPE 1,5 MINI BUCHSE FÜR THERMOELEMENT TYP: K ABGAS-TEMPERATUR ROSA αļ Ф GRAU LADEDRUCK RELAY FUR BENZINPUMPE 1,5 bar 85 86 MOTOR-TEMPERATUR WEISS/GELB WEISS SCHALTLAMPE αj STEUERUNG WEISS/ROT ROT WEISS SCHWARZ LAMDASONDE BENZIN DÜSEN $2,5 \text{ mm}^2$ BLAU GRAU/ROSA S F-LADER Š WEISS/BLAU GELB LUFTMASSE 80/92 LEELAUF **KST** ZÜNDUNG 6Α hier: 30 +5V **o** WEISS/GRAU ROT/BLAU 0 V 🖰 Sicherung für: WASSER +12V DUSEN ca 2,8A Bypassvent.leerl ca 2,8A Bypassvent.teert
ca 0,5A Sollventil Lader
kis 0,4A Schaltlampe
ca 0,1A Luftmassenmesser
ca 0,1A Ladedruckgeber
ca 2A Heizung Lamdasonde
ca 0,16A Relay f.Bezinpumpe
ca 0,1A Steuerung $1,0 \text{ mm}^2$ WEISS BLAU ANSAUGLUFT-TEMPERATUR GRUN BRAUN SCHWARZ 4 mm^2 1 \downarrow HALLGEBER ZUNDVERST. +12 VOLT 0V(MASSE) BATTERIE

(C) GORKLO Automation

Technische Daten:

Stromversorgung:

	Spannung	Stromaufnahme
C1	13,8 V	0,1 A

Eingänge:

	Funkt	Тур	Bereich	Geber
Zündung	-/Z	Digital	0-13,8 V	Halleffekt-Sensor
Res.	-/-	Digital		
Luftmasse	G/-	Analog	0-5 V	Messumformer
Motortemperatur	G/Z	Analog	0-10 KOhm	NTC oder PTC
Lufttemperatur	G/Z	Analog	0-10 KOhm	NTC oder PTC
Abgastemperatur	-/-	Analog	intern	K-Thermoelement (NiCr-Ni)
Ladedruck	-/Z	Analog	0-5 V	Messumformer
Lambdawert	G/-	Analog	0-1 V	Platin-Sensor
Res.	-/-	Analog		

⁽G)=Gemischbildung (Z)=Zündsteuerung (-)=kein Einfluss

Ausgänge: Maximaler Schaltstrom

Umgebungs- Temperatur	Benzin- Düsen	Wasser- Düsen	Leerlauf- Stellung	Lader- Stellung	Pumpen- Relais	Schalt- Lampe	Zündung
Bei +25°C	40A	10A	5A	5A	0,5A	0,5A	0,5A
Bei +70°C	30A	8A	4A	4A	0,4A	0,4A	0,4A
Kurzschluss schutz	50A	14A	7A	7A	0,7A	0,7A	0,7A
Temperatur schutz	150°C	130°C	165°C	165°C	130°C	130°C	130°C

⁽ Andere Ströme sind auf Anfrage lieferbar)

Ausgänge: Bereiche

	Einspritz- düsen	Leerlauf- Stellung	Lader- Stellung	Pumpen- Relais	Schalt- Lampe	Zündung
Verstell- Bereich	Kennfelder 0-100%	0-100%	0-100%	Autom. ein/aus	100-15900 UM	Kennfelder 0°-50° vOT

Einbau:

Hier gelten die für elektrische Geräte üblichen Regeln.

Die Steuergeräte so befestigen dass Metallkanten Schrauben oder Späne keine Kurzschlüsse auf den Leiterplatten verursachen können.

Die Steuergeräte nicht direkter Wärmestrahlung aussetzen. Etwa Motorabwärme oder direkter Sonnenstrahlung. (Denn der Übertemperaturschutz im Lastteil reagiert auch wenn die Transistoren nicht durch den Strom sondern von außen erwärmt werden).

Anschluss:

Bevor Arbeiten an der elektrischen Anlage ausgeführt werden das Massekabel der Batterie abklemmen oder den Batteriehauptschalter ausschalten!

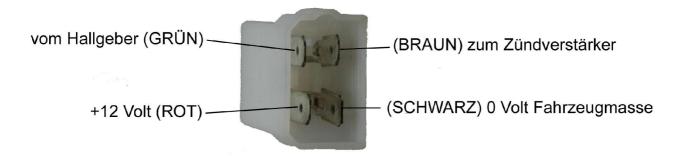
Sehen Sie sich zuerst den Schaltplan oben an.

Minimalkonfiguration:

Wer sich nur mal mit der Bedienung vertraut machen oder sich die Einstellung ansehen möchte kann einfach +12V und 0V (Masse) an die Steuerung (Sicherung nicht vergessen) anschließen.

Für den **Betrieb des Zündungsteils allein** ist neben der Stromversorgung mindestens der Anschluss eines Hallsensors und eines Zündverstärkers erforderlich. Hallsensor und Zündverstärker sind im Schaltplan nicht dargestellt und benötigen natürlich auch einen Anschluss an +12V und 0V (Masse).

Für den **Betrieb des Einspritzteils allein** ist mindestens der Anschluss eines Hallsensors am Zündeingang, ein Luftmassenmesser und die Einspritzdüsen erforderlich.


Ein Motortemperaturgeber ist nicht zwingend notwendig, erleichtert aber das Starten, Warmlaufen und den praktischen Betrieb enorm.

20 Ampere Stromaufnahme sind für eine Benzinpumpe die 3 bis 4 bar Druck unter allen Umständen aufrecht erhalten soll nichts ungewöhnliches. Eine Starterbatterie die bei Rennwagen oder Motorrädern ja meistens aus Gewichtsgründen ziemlich minimalistisch ausgelegt ist, wird deshalb bei Motorstillstand schnell entladen. Der Ausgang für das Benzinpumpen-Relais schaltet die Benzinpumpe automatisch ab wenn der Motor sich nicht mehr dreht.

Standardkonfiguration:

Der Schaltplan oben ist nur ein Vorschlag. Wer die angeschlossenen Geräte auf mehr Sicherungen aufteilen möchte kann das natürlich gerne machen.

4pol. Steckverbindung X1: Stromversorgung und Zündung

Schwarze Ader: 0Volt (Masse) Anschluss, dient als Rückleitung für sämtliche geschalteten Geräte und Bezugspotential für die Geber. Querschnitt einhalten.

Rote Ader: +12Volt für die Steuerung.

Grüne Ader: Der Steuerungseingang für die Zündung wird mit dem Hallgeberausgang verbunden. (+12Volt und 0Volt/Masse für den Hallgeber nicht vergessen).

Braune Ader: Der Steuerungsausgang für die Zündung wird mit dem Eingang des Zündverstärkers verbunden. (+12Volt und 0Volt/Masse für den Zündverstärker nicht vergessen).

Als **Zündverstärker** kommen alle Geräte in frage die sonst von einem Hallgeber angesteuert werden.

Die beiden Signalleitungen zum Hallgeber und Zündverstärker sollten möglichst kurz und nicht in der nähe von andern Kabeln (etwa die Hochspannungs-Zündkabel) verlegt werden um Störungen zu vermeiden. Abgeschirmt werden mussten diese Kabel noch in keinem Fall. Das verwenden von Widerstands -Zündkabel, -Verteilerfinger, -Stecker und -Zündkerzen ist jedoch empfehlenswert.

Foto: Zündgeber eines beliebten V2 Choppers. Die "Fensterbreite" entspricht dem Schließwinkel.

Im oberen Teil dieses Zündgebers befindet sich ein Dauermagnet. Im unteren etwas kleinerem Teil befindet sich der Halleffekt-Sensor (Magnetfeld-Sensor). Durch abschirmen und freilassen in dem Spalt dazwischen wird das Zündsignal erzeugt.

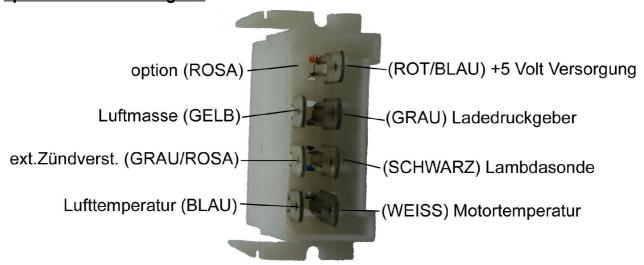


Foto: Blick unter die Verteilerkappe eines VW-Golf. Unten der schwarze Hall-Geber.

Foto: Für einen Motor mit 4 Zylindern wird ein Blendenrotor mit 4 Öffnungen benötigt .

8pol. Steckverbindung X2:Geber

Rot/blaue Ader: +5Volt Referenzspannung für Luftmasse- und Ladedrucksensor.

Vorsicht: die Rot/blau geringelte Leitung darf nicht mit +12Volt in Berührung kommen!

Die Steuerung wird sonst zerstört!

Gelbe Ader: Signaleingang Luftmasse

Blaue Ader: Signaleingang Lufttemperatursensor Weiße Ader: Signaleingang Motortemperatursensor Schwarze Ader: Signaleingang Lambdasonde Graue Ader: Signaleingang Ladedrucksensor

Grau/rosa Ader: Signaleingang Zündverstellung durch externen Kontakt Wird die grau/rosa Ader auf Masse geschaltet, so ist die eingestellte Zündwinkelkorrektur wirksam. Wird die grau/rosa Ader nicht auf Masse geschaltet (Kontakt offen) wird die Einstellung ignoriert.

Diese Funktion ist als **Ünterstützung für einfache NOS-Anlagen**, Erster-Gang-Schalter, Teil einer Launch-Control, als Eingang für Externe Schlupfregelungen, oder als Eingang für Externe Klopfregelungen gedacht.

Mit einem einfachen Knopf am Lenkrad/Lenker leistet diese Funktion aber auch als Abstimmhilfe gute Dienste wenn man mal während der Fahrt auf Knopfdruck die Zündkurve ein paar Grad zurück (oder vor mit einem öffnerkontakt) stellen möchte.

Rosa Ader: Reserve

Unterstützte Motortemperaturgeber:

Derzeit werden 3 Motortemperaturgeber unterstützt

Bezeichnung	Stecker	Geh.Material	Hersteller	Nr
BO_SW	schwarz	M12x1,5 Messing	BOSCH	0 280 130 032
BO_GR	grau	M12x1,5 Messing	BOSCH	0 280 130 026
KTY_10		M10x1 Edelstahl		

Mit KTY_10 ist ein Siliziumsensor gemeint, der bei seiner Referenztemperatur (25°C) einen Widerstand von 2000 Ohm hat (Toleranz: +/- 1%). Dieser Sensor ist im Elektronikhandel in einem Edestahlgehäuse mit M10x1 Gewinde erhältlich. Ohne Gehäuse heist dieser KTY 10-6 (PHILIPS) oder KTY 81/210 (SIEMENS)

Unterstützte Luftmassenmesser:

Derzeit werden 3 Heissfilmluftmassenmesser unterstützt.

Bezeichnung	Durchmesser	Geh.Material	Hersteller	Nr
80KST	80mm	Kunststoff	BOSCH	0 281 002 403
92KST	92mm	Kunststoff	BOSCH	0 280 218 015
95ALU	95mm	Aluminium	BOSCH	

Foto: 80mm Kunststoffluftmassenmesser

Steckerbelegung: 80er und 92er Kunststoff-Luftmassenmesser:

pin	1	2	3	4	5
Funktion	Lufttemperatur sensor	+12Volt Versorgung	Masse (0Volt)		Luftmassen- Sensor
Belegung	X2 Blau	+12Volt	Masse(0Volt)	X2 Rot/Blau	X2 Gelb

Steckerbelegung: 95er Aluminium-Luftmassenmesser

pin	1	2	3	4
Funktion	Masse (0Volt)	Masse (0Volt)	+12Volt Versorgung	Luftmassen- Sensor
Belegung	Masse(0Volt)	Masse(0Volt)	+12Volt	X2 Gelb

Obwohl die Luftmassenmesser nicht druckfest sind werden diese oft auf der Druckseite des Laders eingebaut. Die Temperaturgeber messen dann die Ladelufttemperatur. Temperatursensoren an verschiedenen Stellen einzubauen und mit einem einfachen Umschalter umzuschalten ist ebenfalls möglich.

Unterstützte Ansauglufttemperaturgeber:

Derzeit werden 2 Ansauglufttemperaturgeber unterstützt

Wer den Aluminiumluftmassenmesser (ohne Temperaturgeber) hat kann einen KTY 10-6 benutzen. Dieser Sensor ist im Elektronikhandel für wenig Geld erhältlich.

Bezeichnung	Sensor
BOSCH	Im 80er und 92er Kunststoffluftmassenmesser
KTY_10	KTY 10-6 (PHILIPS)

Unterstützse Ladedrucksensoren:

Die unterstützten Ladedrucksensoren haben die gleiche Kennlinie und benötigen deshalb keine Umschaltung. Nutzbarer Bereich: -0,8 bis +1,5 bar

Die Ladedrcksensoren sollten mit der Öffnung nach unten montiert werden damit sich kein Schmutz oder Kondenswasser im Ladedrucksensor sammelt.

Foto: BOSCH Ladedrucksensor

Steckerbelegung: Ladedrucksensor BOSCH 0 281 002 119

pin	1	2	3
Funktion	+5Volt Versorgung	Masse (0Volt)	Drucksignal
Belegung	X2 Rot/Blau	Masse (0Volt)	X2 Grau

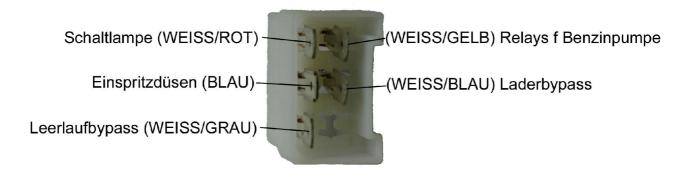
Foto: Alternativer Ladedrucksensor

Steckerbelegung: Alternativer Ladedrucksensor

pin	3	2	1
Funktion	+5Volt Versorgung	Drucksignal	Masse (0Volt)
Belegung	X2 Rot/Blau	X2 Grau	Masse (0Volt)

Der Alternative Ladedrucksensor hat eine andere Belegung als der im Schaltplan eingezeichnete BOSCH Ladedrucksensor. Die Pin-Nummern befinden sich auf der Stirnseite und auf der Rückseite des Steckers.

3 bar Ladedrucksensor


Foto: 3 bar Ladedrucksensor

Anschlussbelegung 3 bar Ladedrucksensor

ader	Rot (1)	Grau (2)	schwarz
Funktion	+12Volt Versorgung	Drucksignal	Masse (0Volt)
Belegung	+12Volt	X2 Grau	Masse (0Volt)

Der 3 bar Ladedrucksensor hat einen nutzbaren Bereich von -0,8 bis +3,0 bar absolut. Edelstahlgehäuse mit 1/4" Gewinde.

6pol. Steckverbindung X3: Ausgänge

blaue Ader: Ausgang Benzin Einspritzdüsen

Polung beachten. Die Anschlüsse der Düsen sind mit (+) und (-) markiert.

weisse Ader: Ausgang Wasser Einspritzdüsen

weiss/blaue Ader: Ausgang Ladedruckbypass

weiss/gelbe Ader: Ausgang Relais für Benzinpumpe

weiss/rote Ader: Ausgang Schaltlampe

weiss/graue Ader: Ausgang Leerlaufbypass

Das Anschlussprinzip ist bei allen Ausgängen gleich. Über eine Sicherung wird +12Volt an die Verbraucher gelegt. Die andere Anschlussseite wird von der Steuerung gegen Masse geschaltet.

Minibuchse für Thermoelement X4: Thermoelement

Dieser Anschluss ist für die Abgastemperaturmessung mit einem Thermoelement vorgesehen. Das Messprinzip beruht dabei nicht auf einer Widerstandsänderung sondern auf einer kleinen Spannungsänderung die die durch eine bestimmte Metallpaarung erzeugt wird. Dabei werden die verschiedene Kennlinien durch Bezeichnung mit Buchstaben oder durch die Angabe der Metalle bezeichnet.

Hier handelt es sich um einen Eingang für Thermoelemente vom Typ "K" (NiCr/Ni).

Foto: Buchse und Stecker für Thermoelement

Am besten man verwendet fertig konfektionierte, mit Kabel und Stecker versehene Thermoelemente. Die Kabel dürfen nicht mit "normalem" Kupferkabel verlängert oder normalen Klemmen gekürzt werden. Dabei würden neue Metallpaare gebildet und die Spannungsdifferenzen zu Messfehlern führen. Im Fachhandel sind spezielle Stecker, Klemmen, Leitungen (sog. Ausgleichsleitungen) und Umschalter erhältlich die zu den jeweiligen Thermoelement-Typen passende Metallpaarungen enthalten.

Falls noch etwas unklar sein sollte, lieber anrufen bevor die Spannung eingeschaltet wird. Wir liefern die fehlenden Informationen gerne.

Bedienung:

Nach dem einschalten der Spannung sollte sich etwa folgendes Bild ergeben:

11,9V STARTE 0000 UM 20°C 25°C 30°C 0,0bar 0,0° 00 L 21Kgh 72 0,9995λ

Inhalt des Anzeigedisplays:

	links	mitte	rechts
Zeile 1	Menüabhänig	Hinweistexte oder Menüabhänig	Drehzahl oder Menüabhänig
Zeile 2	Lufttemperatur in [°C]	Motortemperatur in [°C]	Abgastemperatur in [°C]
Zeile 3	Ladedruck (wenn vorhanden) in [bar]	ausgegebener Zündwinkel in [°]	relative Last (in Digits) [#]
Zeile 4	Startmasse oder Luftmasse in Kg pro Stunde [Kg/h]	Gemischverhältnis (in Digits) [#]	Lambdawert in Lambda oder [mV]

In den unteren 3 Zeilen des Displays werden permanent Werte angezeigt.

Nur die obere Zeile wird für Einstellungen benutzt. Mit den "UP" "DOWN" Tasten wird durch das Menü geblättert.

Die einfachen Einstellungen werden mit den "+" "-" Tasten vorgenommen (s. Beispiel 1).

Bei den Kennlinien wird mit den "+" "-" Tasten durch die Kennlinie geblättert und mit den "UP" "DOWN" Tasten die Werte eingestellt.

Wenn die eingestellten Werte auf dem Display erscheinen, sind sie bereits im internen Eeprom gespeichert und ohne weiteres zutun für die Steuerung wirksam.

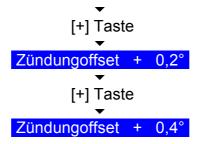


Foto: Bedientasten C1

Beispiel 1: Verstellen des Zündungsoffsets Ausgehend vom Startbild. Betätigen Sie zweimal kurz die "UP" Taste.

Betätigen Sie mehrmals kurz die "+" Taste oder die "-" Taste. Beobachten Sie die Wirkung in der Mitte von Zeile3. Hier wird die gesamte Zündkennlinie verschoben. Aber auch bei extremen Additionen bleibt der Zündwinkel zwischen 0° und 50° vor O.T.

Wenn Sie diesen Zündungsoffset sehen, ist er schon gespeichert und für die Steuerung wirksam.

Betätigen Sie zweimal kurz die "DOWN" Taste oder schalten Sie kurz die Spannung aus um wieder ins Startbild zu kommen.

Übersicht der Verstellmöglichkeiten:

Anzeige in Zeile 1 nach dem einschalten der Spannung. 11,9V STARTE 0000 UM

Spitzenwertspeicher für die Abgastemperatur:

Löschen mit "-" Taste oder Spannung aus.

Abgas Peak 430°C

Zündungsteil:

Kennlinie Zündwinkelkorrektur in Abhängigkeit der Drehzahl.

0000 UM vOT 0,0° [+] 0100 UM vOT 1,0° 16000 UM vOT 35,0°

Verschieben des gesamten Zündkennfeldes.

Zündungoffset + 0,0°

Auslösedrehzahl für die Schaltlampe.

Schaltlampe 5500 UM

Zündwinkelkorrektur beim auslösen der Schaltlampe.

Schaltrückn -10.0

Drehzahlbegrenzer Zündung.

Begrenzer Z 7000 UM

Kennlinie Zündwinkelkorrektur in Abhängigkeit des Ladedrucks.

+ - bar korr + 0.0° [+] -0.8 bar korr + 0.0° 1.5 bar korr -15.0°

Kennlinie Zündwinkelkorrektur in Abhängigkeit der Motortemperatur.

+ -°C MT korr + 0,0° [+] -40°C MT korr + 0,0° 140°C MT korr + 0,0°

Kennlinie Zündwinkelkorrektur in Abhängigkeit der Lufttemperatur.

+ -°C LT korr + 0,0° [+] -40°C LT korr + 0,0° 140°C LT korr + 0,0°

Zündverstellung durch externe Schalter oder Geräte:

Solange der Eingang externe Zündverstellung (X5 grau/rosa) gegen Masse geschaltet ist, wird die hier eingestellte Zündrücknahme wirksam.

Z Ext korr + 0.0

Kann z.B. zur Drehmementrücknahme durch einen Erster-Gang-Schalter oder Zündrücknahme beim einschalten der Lachgaseinspritzung verwendet werden.

Gemischteil:

Gemischfaktor für den Leerlaufbereich.

(diese Funktion entspricht beim Vergaser in etwa der Leerlaufdüsengröße)

Gemisch LL 65

Gemischfaktor für den Teillastbereich.

Gemisch TL 69

Gemischfaktor für den Vollastbereich.

Gemisch VL 71

Drehzahlgrenze zum umschalten des Gemischfaktors vom Leerlauf- in den Teillastfaktor. Grenze LL-TL 1200 UM

Lastgrenze zum umschalten des Gemischfaktors vom Teillast- in den Vollastfaktor. Grenze TL-VL 60 Last

Drehzahlbegrenzer mittels Gemischabschaltung.

Begrenzer GM 7000 UM

Kennlinie Gemischanfettung in Abhängigkeit der Motortemperatur. (Zum Warmlaufen)

+ -°C MT GAnf + 00 [+] -40°C MT GAnf + 60 140°C MT GAnf + 00

Kennlinie Gemischanfettung in Abhängigkeit der Lufttemperatur.

+-°C LT GAnf + 00 [+] -40°C LT GAnf + 00 140°C LT GAnf + 00

Wasser-Methanol Einspritzung

Kennlinie Wassermenge in Abhängigkeit des Ladedrucks.

+- bar WMng 00 [+] -0,8 bar WMng 00 1,5 bar WMng 00 Diese Kennlinie wird auch zum einschalten der Wassereinspritzung benutzt. Steht hier eine Null, wird kein Wasser eingespritzt auch wenn bei der Ladelufttemperatur ein Wert zum erhöhen der Wassermenge eingestellt ist.

Kennlinie Wasseranfettung in Abhängigkeit der Lufttemperatur/Ladelufttemperatur.

+ -°C LT Wkor + 00 [+] -40°C LT Wkor + 00 140°C LT Wkor + 00

Startautomatik:

Nach Ablauf der eingestellten Motorumdrehungen wird kein Kraftstoff mehr eingespritzt. Die Zündung arbeitet jedoch weiter. Diese Funktion soll verhindern dass unverbranntes Benzin den Katalysator beschädigt.

Startdauer 07 UM

Kennlinie Startgemischanfettung in Abhängigkeit der Motortemperatur.

Diese Kennlinie ist nur beim starten wirksam.

+ -°C ST GAnf + 00 [+] -40°C ST GAnf + 60 140-°C ST GAnf + 00

Startmasse vorgeben:

Beim starten wird dieser Wert als Luftmasse verwendet.

Startgemischanfettung durch vorgeben einer Luftmasse mit der beim Starten grechnet wird. Nach dem anspringen des Motors wird immer die gemessene Luftmasse benutzt. Eingestellt wird meistens die Masse die der Motor etwa im Leerlauf ansaugt.

Wird die Startmasse auf AUS gestellt, so wird immer die gemessene Luftmasse verwendet und dies auch Display unten links so angezeigt.

Startmasse 21kgh

Automatische Schubabschaltung:

Lastgrenze zum auslösen der Schubabschaltung. Schubabsch 02 Last

Drehzahlgrenze zum aktivieren der Schubabschaltung.

Fällt die Last unter den oben eingestellten wert und die Drehzahl liegt über der hier eingestellten Grenze, wird kein Kraftstoff mehr eingespritzt.

Zum deaktivieren der automatischen Schubabschaltung die Drehzahlgrenze hochstellen. Schubabsch 1500 UM

Auswahl der Geber:

Motortemperaturgeber wählen.

Motortemp Typ: BO_SW

Lufttemperaturgeber wählen.

Lufttemp Typ: BOSCH

Ladedruckgeber wählen.

Ladedruck Typ: BOSCH

Luftmassenmesser wählen.

Luftmasse Typ: 92KST

Nullpunkt der Einspritzdüse einstellen.

Der eingestellte Wert ist die Zeit vom anlegen der Spannung bis die Düse wirklich öffnet. Kleinere Düsen mit weniger bewegter Masse oder mehr Leistung (kleinerer Ohmzahl) sind schneller, größere Düsen oder solche mit weniger Leistung sind träger.

E-Duese Typ: 650 µs

Wenn keine Werte bekannt sind Werkseinstellung (650µs) belassen.

Hersteller.	BOSCH	BOSCH	BOSCH	
Nr.	0 280 150 725	0 280 150 420	0 280 156 012	
Widerstand	16 Ohm	14,5 Ohm	12 Ohm	
Zeit	1000 µs²	1000 µs²	800 μs²	

²gemessen

Nullpunkt der Wasser-Methanol Einspritzdüsen einstellen.

W-Duese Typ: 650 µs

Wenn keine Werte bekannt sind Werkseinstellung (650µs) belassen.

Drehzahlanzeige Abgleichen:

Drehzahlanzeige trimmen. Bei Erstinbetriebnahme oder Einbau eines andern Zündgebers muss die Motordrehzahl gemessen und hier getrimmt werden bis die Anzeige stimmt.

Trimmer Drehzahl 225

Diese Einstellmöglichkeit kann auch genutzt werden um die Anzeige auf bereits vorhandene Drehzahlmesser einzustellen um identische Anzeigen zu bekommen. Dabei ist zu beachten dass vom Drehzahlwert wichtige Funktionen abhängen (z.B. Drehzahlbegrenzer).

Motortyp:

Motortyp einstellen.

Motor Typ: 02

<u>Zyl</u>	<u>Motortyp</u>	Zünd- abstand	Hall- sens.	<u>Ein-</u> gang	Induk <u>-tiv</u>	Ein- gang	Zünd- anlage	<u>Aus-</u> gänge	Einst- ellung
1	-	Egal	1	GN			1 Einzel	BN	01
2	Reihe,Boxer	Egal	1	GN			1 Gruppe	BN	01
2	V	Egal	2	GN			1 Gruppe	BN	02
4	Reihe,Boxer,V	Egal	4	GN			Verteiler	BN	02
5	Reihe	Egal	5	GN			Verteiler	BN	03
6	Reihe,Boxer,V	Egal	6	GN			Verteiler	BN	03
8	Reihe,Boxer,V	Egal	8	GN			Verteiler	BN	04
10	Reihe,Boxer,V	Egal	10	GN			Verteiler	BN	05
12	Reihe,Boxer,V	Egal	12	GN			Verteiler	BN	06

Abschaltbare Lambdaregelung:

Ein- und Ausschalten der Lambdaregelung. Lambda Regelung AUS

Die Lambdaregelung ist in betrieb wenn:

- Diese Einstellung auf "EIN" steht,
- ✓ die Motortemperatur 60°C oder wärmer ist,
- und der Motor sich im Teillastbereich befindet.
- ✓ Die relative Last über dem eingestellten Wert ist.

Es wird dann in der Mitte der 4. Zeile rechts neben dem Gemischfaktor ein Lambdazeichen angezeigt. (21Kgh 72λ 0,9995λ)

Der Regelbereich ist begrenzt auf + - 20# (ausgehend vom im Teillastbereich stehenden Wert des Gemischfaktors).

Einstellung des Lambdasollwerts.

Lambda Soll 0,9985λ

Einstellen der Regelzeit.

Große zahl -> langsame Regelung, kleine Zahl -> schnelle Regelung.

Lambda Reg.Zeit 50

Beim unterschreiten der eingestellten Last wird die Regelung ausgeschaltet um große Regelschwankungen durch den Schiebebetrieb zu vermindern.

Lambda Reg.Last 50

We chsel der Anzeige von λ auf mV.

Lambdaanzeige λ

Da die Kennlinie irgendeiner Lambdasonde verwendet wurde besteht die Möglichkeit die Anzeige auf mV umzustellen und die Spannungswerte für die tatsächlich eingebaute Sonde zu interpretieren.

Anzeigeverzögerung:

Nach ablauf dieser Zeit werden jeweils neue Daten in das Display geladen.

Dient zur verbesserung der ablesbarkeit und hat keinen Einfluss auf den Funktionsablauf. Einstellung nach eigenem Ermessen.

AnzeigVerzg. 100ms

Leerlaufsteller und Leerlaufregler:

Luftbypass für die Leerlaufdrehzahl einstellen.

Leerl.Stellung 50 %

Wenn der Leerlaufregler eingeschaltet ist kann mann hier den Regelausgang beobachten.

(Option) Leerlaufregler ein- ausschalten.

LL Drehzahl Reg AUS

Drehzahlsollwert für den Leerlaufregler einstellen.

LL Drehzahl 1100 UM

Verstärkungsfaktor für den Leerlaufregler einstellen.

LL Drehzahl Vrst 05

Ladedrucksteller und Ladedruckregler:

Handverstellung für den Ladedruckbypass.

Lader Stellung 50 %

Wenn der Ladedruckregler eingeschaltet ist wird hier der Pegel des Regelerausgangs angezeigt.

(Option) Ladedruckregler ein- ausschalten.

Ld Druck Reg AUS

Drucksollwert für den Ladedruckregler einstellen.

Ld Druck sol 0,2 bar

Verstärkungsfaktor für den Ladedruckregler einstellen.

Ld Druck Vrst 20

Layout-, Versions- und Seriennummer anzeigen.

Typ: C1 V1.14 000026

Besondere Anzeigen und Funktionen:

Besondere Anzeigen:

Ein kleines e (error) links neben dem Angezeigten Wert signalisiert das überschreiten des maximalen Eingangssignalbereiches oder des maximalen Anzeigebereiches.

Statt der Zahlenwerte können auch andere Anzeigen erscheinen:

NC (Not Connected) für nicht angeschlossen.

SC (Short Cut) für Kurzschluss.

Überschneidungsanzeige mit Speicher:

Ein kleines Ü (Überschneidung) links neben der Lastanzeige signalisiert das überschneiden der Einspritzzeit. Das heißt die Einspritzdüsen sind dauernd offen und weiteres erhöhen der Luftmasse führt zu ungewolltem abmagern des Gemisches. Dies kann bei Vollast auftreten wenn die Düsen zu klein sind, der Benzindruck zu gering ist oder die Fördermenge der Benzinpumpe nicht ausreicht. Das Ü Zeichen wird (ab Version 1.1) links in der oberen Zeile gespeichert, auch wenn die Überschneidung nur kurz auftritt.

Ein kleines e (error) links neben der Lastanzeige signalisiert das der maximale Bereich des Zeitregisters für die Einspritzung erreicht ist. Dies kann bei sehr fettem Gemisch und gleichzeitig sehr kleiner Drehzahl (z.B. beim starten) auftreten. Eine weitere Anfettung durch mehr Startmasse oder höheren Gemischfaktor ist dann nicht möglich.

Besondere Funktionen:

Wenn kein Geber am Eingang für den Motortemperatursensor angeschlossen ist wird eine Motortemperatur von 80°C für die Kennfelder benutzt und dies zusammen mit einem kleinen "e" auch so angezeigt e80°C .

Wenn kein Geber am Eingang für den Lufttemperatursensor angeschlossen ist wird eine Lufttemperatur von 20°C für die Kennfelder benutzt und dies zusammen mit einem kleinen "e" auch so angezeigt e20°C.

Inbetriebnahme:

Vorbereitungen am Motor:

Ist am Zündgeber/Verteiler eine Fliehkraftverstellung vorhanden so muss diese festgesetzt werden. Ein Schweißpunkt ist eine sichere Sache aber Vorsicht der Hallsensor ist empfindlich gegen unzulässige Erwärmung.

Ist am Zündgeber/Verteiler eine Unterdruckverstellung vorhanden so muss diese außer Funktion gesetzt werden. Hier genügt es den Schlauch abzuziehen und die Öffnungen zu verschließen.

Vorbereitung der Steuerung:

Wenn alle elektrischen Verbindungen hergestellt sind prüfen Sie die eingestellten Daten. Im Steuergerät sind bereits ab Werk die wichtigsten Kennlinien voreingestellt.

- Zündkennlinie
- Zündrücknahme durch Ladedruck
- Startgemischanfettung
- Warmlaufgemischanfettung

Diese Voreinstellungen sollten ausreichen um die meisten Motoren damit zu starten.

Überprüfen Sie **alle** Einstellungen indem Sie mit den [UP] /[DOWN]-Tasten durch die Menüs blättern und korrigieren Sie die Werte.

Zündwinkelanzeige eichen:

Die Zündwinkelanzeige auf dem Display muss mit dem tatsächlichen Zündzeitpunkt in Übereinstimmung gebracht werden.

- 1. Kraftstoffzufuhr an geeigneter Stelle unterbrechen.
- 2. Verteiler/Zündgeberplatte lösen.
- 3. Motor mit dem Starter durchdrehen.
- 4. Mit einem Zündstroboskop die Lage der O.T. Marken auf der Schwungscheibe prüfen.
- 5. Verteiler/Zündgeberplatte verdrehen bis die Anzeige die Lage der O.T.Marken darstellt.
- 6. Verteiler/Zündgeberplatte befestigen.
- 7. Kraftstoffzufuhr wieder herstellen.

Überprüfen des Verteilers:

Wenn der Verteiler eines fremden Fabrikats eingebaut wurde (z.B. VW Verteiler in einen OPEL Motor) ist es sinnvoll die Lage des Verteilerfingers zu prüfen.

- 1. Zündung unterbrechen.
- 2. Kurbelwelle auf die Mitte des Zündbereichs (bei 5°-50°vOT ->28°vOT) Stellen.
- 3. Prüfen ob der Verteilerfinger auf einen Kontakt zeigt und nicht auf den Zwischenraum.
- 4. Sicherstellen dass der Verteilerfinger im Zündbereich (0°-50°vOT) auf einen Kontakt schließen kann. Dabei müssen eventuell Verteilerfinger und Blendenrotor gegeneinander verdreht werden.

Nach diesen Einstellungen und Überprüfungen ist der Motor startbereit.

Stand: 2.2006

Bert